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1 Abstract 
The prompt from the projects asks to consider two stereo pair images. Taking work from project 2 I was 

to find features, specifically corners, within each photo. Non-max suppression was used to find 

individual pixels where these corners were located. From there normalized cross correlation was used to 

correlate corners between both sets of images and RANSAC was used to eliminate outliers. A heuristic 

was also used to only consider inliers that had a similar slope to the entire set of epipolar lines being 

considered. Using these inlier lines, the fundamental matrix was estimated using the 8-point algorithm 

discussed in class, and from there the Fundamental Matrix was estimated. Finally, a disparity map was 

shown that compares the difference between pixel movement in each stereo photo pair. The project 

asked for a horizontal and vertical disparity map, but given the cameras are only translated horizontally, 

the vertical disparity map would be insignificant, and the overall disparity map would only capture 

disparity in the horizontal direction. Therefore, the disparity map shown is only that of the disparity of 

the entire picture which is only comprised of horizontal movement.  



2 Algorithm Descriptions 
Work from project 2 could be reused in the course of completing this extra credit assignment. I have 

copy and pasted the explanations for the relevant code from project 2, and where necessary explained 

changes to the code for the purpose of finishing this project. This work was originally completely with 

Can Uner. 

2.1 Flowcharts 
 

 

 

 

 

 

 

 

 

 

 

2.2 The Harris Corner Detector from Project 2 

To apply the Harris corner detector, we first filter the image with Sobel masks that would give 
the gradient information in both x and y directions of the image. One other benefit of using 
Sobel mask is that it also has the property of averaging around the pixel which works as a low 
pass filter and helps us to smoothen the noise component within the pixels. We square the 
gradient matrices and also construct the cross gradient product matrix (which results in 3 new 
matrices: I2x, I2y, Ixy). These matrices are low pass filtered with a Gaussian filter in order to 
obtain the averaged sum within the Gaussian mask for each pixel. These new matrices give us 
the results where we can use the R-score test for each pixel, which would provide the necessary 
information for us to decide whether a pixel is a corner or not (i.e. for a corner the R value 
should be positive and large; whereas for edges the R value is negative and for flat region the R 
value is positive but small). The R value is calculated from the value given as R(i,j) = detM - k* 
trace(M) where k is chosen to be a value between 0.04-0.06 and the M matrix is constructed as 
filling the diagonal of the matrix with the filtered and squared gradient pixels and non-diagonal 
terms are obtained from the cross product pixels. We then apply a non-max suppression for the 
pixels that are supposed to be corners (due to algorithm and filtering the corners does not 
occur as a single pixel instead occurs as blobs) so that we can find the real pixels corresponding 
to the corners within the image. 

Corner Detection NCC 

RANSAC Heuristic Disparity Map 

Disparity Map Fundamental Matrix 



2.3 Normalized Cross Correlation from Project 2 

After obtaining the corner pixels from two images, we want to find the corners that correspond 
to each other between two images. For this purpose we apply the normalized cross correlation 
algorithm. The algorithm consists of first obtaining patches from the images whose centers 
correspond to the corners that were found with the Harris corner detector algorithm. We 
normalize each patch by first subtracting the mean value of the patch from each pixel value 
within the patch and then by dividing each pixel value within the patch by the summation of all 
pixel values within patch. After this process, we calculate the cross correlations between every 
patch in Image 1 and Image 2. We find the highest normalized cross correlation value for each 
patch in Image 1 among all the patches in Image 2. We then compare that value with a 
predetermined threshold value in order to make sure the correspondence between two 
patches is higher than a minimum value. We will make use of the corners corresponding to 
those patches (obtained from NCC process) to estimate the homography matrix. 

2.4 RANSAC from Project 2 

After the NCC part, we have corners from each image that correspond to each other but even 
though we threshold the NCC scores there are still outliers which will result in a bad estimate of 
the homography matrix. For this reason, we will be using RANSAC. For this algorithm we choose 
4 random corners (the corners that were obtained from NCC part which have a corresponding 
corner in the Image 2) from the first image and estimate the homography. The homography 
matrix has 9 components but it has 8 degrees of freedom. In order to estimate the 
homography, we are using the constraint of ||h||=1. Thus, from the lecture notes we can 
estimate the homography matrix from 4 points by constructing the matrix A and using SVD in 
order to find the corresponding homography matrix. We use homogeneous coordinates for the 
coordinates of pixels in order to be able to do multiplication with the homography matrix. After 
estimating the homography matrix we map all the corners of Image 1 (obtained in the NCC 
part) to corners in Image 2. We compute the distances of the estimated coordinate of the 
corner in Image 2 with the real coordinate of the corner in Image 2. In order to make a valid 
comparison we normalize the new coordinates with the third component so that homogeneous 
coordinates are in the same form. We now compare the distances with a predetermined 
threshold so that we would be able to find the correspondences that are valid with the 
homography transformation. We repeatedly apply this procedure, so that we would be able to 
find the homography matrix that has the highest number of valid correspondences. We then 
use these inlier corners to construct the new homography ( least square homography) matrix 
that would be the best estimate of the homography matrix. 

2.5 Changes to RANSAC for Extra Credit Project 
So far, all the work was the same from project 2. The RANSAC code was the only thing that needing 

changing. The original RANSAC is used to estimate the homography transform used in warping two 

images of the same seen into one panorama. This project asked to use RANSAC to compute the 

fundamental matrix. The fundamental matrix is used to take a point in one image and compute the 

epipolar line within the other image corresponding to that point.  



The 8-point algorithm is also used to estimate the homography matrix in project 2, but different 

parameters are used in this project to estimate the fundamental matrix. The code was modified 

according to the algorithm presented in the slide from class, shown below. 

 

 

3 Experiments 
The experiments involve taking the following two sets of stereo image pairs. The first set is referred to 

as “cones” and the second as “castle.” Cones is changed to black and white during preprocessing. 

Although it wasn’t assumed from the start of development, it was discovered through the course of the 

project that the cameras are only translated horizontally, and have no vertical change in position. This 

will make computing the disparity map easier. 

 

Cones: 

        

 



Castle: 

        

 

3.1 Point Correspondences in Image 1 & 2 
The point correspondences are computed using code written during project 2, and the code is 

unaltered. Section 2.2 discusses the process Can Uner and I took to originally develop the code. 

3.2 Estimate the Fundamental Matrix 
As discussed in section 2.4 and 2.5, this is the first section of code that needed to be altered from 

project 2.  

3.3 Compute Dense Disparity Map 
When you consider the slope of the epipolar lines within each image, it can be inferred that they have a 

slope of near zero. This implies that the camera was only translated horizontally and has no vertical 

component to its translation. From this, I determined that any disparity map calculated for the vertical 

component of the scenes would just be a black image. From there it can be deduced that any dense 

disparity map that’s computed will only contain movement in the horizontal direction so this implies 

that the dense disparity map would actually be the same as the horizontal map. That is why I only 

choose to show one disparity map for each stereo pair. 

4 Results & Observations 

4.1 Point Correspondences in Image 1 & 2 
The Harris corner detector and non-max suppression from project 2 work well to find distinguishable 

features within these stereo pairs. In each of the following images the left-hand image shows the scene 

without non-max suppression, while the right shows the resulting corners that are chosen as image 

features. 



 

The castle scene has less features than the cones scene, but I still get more than 8 corresponding points, 

so I have enough to calculate the Fundamental matrix after RANSAC. 

 

I choose to add a heuristic before heading into the RANSAC code, because RANSAC was still giving me 

some outliers based on bad correlations that come out of Normalized Cross Correlation. I calculate the 

slopes of every epipolar line for each cross correlated feature, and take the standard deviation. I only 

keep correlated features that are within a certain standard deviation. This further reduces the amount 

of outliers. 

4.2 Estimate the Fundamental Matrix 
The following two F matrices are the fundamental matrix for each stereo scene. 

Cones: 

 



 

 

 

 

Castle: 

 

RANSAC, computes the fundamental matrix and also eliminates further outliers from the dataset. The 

remaining epipolar lines are seen below. 

 

4.3 Compute Dense Disparity Map 
There is a lot of noise in the fundamental matrices that were computed in section 4.2. And while 

checking by hand and using them shows decent results they were not sufficient for calculating disparity 



maps. More corresponding points could be used to make the fundamental matrix more accurate, but 

there was not enough time to find the perfect threshold to determine the best results. 

 



 

5 Conclusion 
The prompt from the project asked me to consider two stereo pair images. Taking work from project 2 I 

was to find features, specifically corners, within each photo. Non-max suppression was used to find 

individual pixels where these corners were located. From there normalized cross correlation was used to 

correlate corners between both sets of images and RANSAC was used to eliminate outliers. A heuristic 

was also used to only consider inliers that had a similar slope to the entire set of epipolar lines being 

considered. Using these inlier lines, the fundamental matrix was estimated using the 8-point algorithm 

discussed in class, and from there the Fundamental Matrix was estimated. I saw too much noise in my 

fundamental matrix to use it to calculate a dense disparity map but could determine from the slopes of 

the epipolar lines that there was no vertical component to camera translation. Finally, a disparity map 

was shown that compares the difference between pixel movement in each stereo photo pair. The 

project asked for a horizontal and vertical disparity map, but given the cameras are only translated 

horizontally, the vertical disparity map would be insignificant, and the overall disparity map would only 

capture disparity in the horizontal direction. Therefore, the disparity map shown is only that of the 

disparity of the entire picture which is only comprised of horizontal movement. The disparity map 

excellently demonstrates the point from a homework question we had to do at one point in the 

semester. The question where we had to perform partial derivatives on the disparity equation to show 

the direct relationship to image depth. In other words, the disparity map shows change in pixel location 

within each image, the similar colored regions of the scene are a similar distance away from the camera. 

This relationship is how the computer vision field reliably calculates depth in stereo images. 

  



6 Appendix 

6.1 Main.m 
clear all 
close all 
clc 
%Ima1 = rgb2gray(imread('Cones_im2.jpg')); Ima2 = 

rgb2gray(imread('Cones_im6.jpg')); 
Ima1 = rgb2gray(imread('cast-left.jpg')); Ima2 = rgb2gray(imread('cast-

right.jpg')); 

  
corners1 = HarrisCornerDetector(Ima1); 
corners2 = HarrisCornerDetector(Ima2); 

  
nccthre = 0.998; 
% nccthre = 0.9; 
[bestfit, cornersncc1, cornersncc2] = NCC(Ima1,Ima2, corners1, corners2, 

nccthre); 

  
incor1 = [] 
while size(incor1,1) <= 1 
    [F, incor1, incor2] = RANSAC(Ima1,Ima2,cornersncc1,cornersncc2,100,10); % 

iteration, threshold, threshold for ncc 
end 

  
color = {'red'}; 
out1 = insertMarker(Ima1, incor1, 'x', 'color', color, 'size', 1); 
out2 = insertMarker(Ima2, incor2, 'x', 'color', color, 'size', 1); 

  
% Heuristic 
slopes = (incor2(:,2) - incor1(:,2)) ./ (incor2(:,1) - incor1(:,1)); 
slopes(isnan(slopes)) = 1000000; 
muSlopes = mean(slopes(slopes<1000000)) 
sigmaSlopes = std(slopes(slopes<1000000)) 

  
incor1 = incor1(find(abs(slopes) < (muSlopes + sigmaSlopes*.01)),:) 
incor2 = incor2(find(abs(slopes) < (muSlopes + sigmaSlopes*.01)),:) 

  
imshowpair(out1, out2, 'montage'); 
hold on 
for m = 1: size(incor1,1) 
    colors = {'red','blue','green','cyan','yellow'}; 
    

line([incor1(m,1),incor2(m,1)+length(Ima1)],[incor1(m,2),incor2(m,2)],'color'

,colors{mod(m,5)+1}); 
    hold on; 
end 

  
% incor1(:,3) = 1; 
% incor2(:,3) = 1; 
%  
% w = 3; 
% counter = 0; 
% for i = w+1:size(Ima1, 1) - w - 1 
%     for j = w+1:size(Ima1, 2) - w - 1 



%         line = F * [i j 1]'; 
%          
%         template = Ima1(i-w:1:i+w, j-w:1:j+w); 
%         Cd = 0; 
%         counter = 0; 
%         xy_ = zeros(1,2); 
%         for ii = 1:size(Ima2) 
%             for jj = 1:size(Ima2, 2) 
%                 if abs([ii jj 1] * line) < .001 
%                     counter = counter + 1; 
%                     xy_(end + 1, :) = [ii jj]; 
%                      
%                 end 
%             end 
%         end 
%         disp(counter) 
%         imageYES = insertMarker(Ima2, xy_, 'x', 'color', color, 'size', 1); 
%         imshow(imageYES); 
%     end 
% end 

  
% https://www.mathworks.com/help/vision/ref/disparity.html  
%verticalDisparityMap = zeros(size(Ima1)); 
figure 
dispRange = [0 256]; 
disparityMap = disparity(Ima1,Ima2,'BlockSize', 15, 

'DisparityRange',dispRange); 
imshow(disparityMap, dispRange) 
title('disparity') 
colormap(gray) 
colorbar 

 

  



6.2 HarrisCornerDetector.m 
function [ fincorncoor ] = HarrisCornerDetector( Ima ) 
[h,w] = size(Ima); 
sob = [-1 -1 -1; 0 0 0; 1 1 1]; 
Ix = filter2(sob',Ima,'valid'); 
Iy = filter2(sob,Ima,'valid'); 
Ix2 = Ix.*Ix; 
Iy2 = Iy.*Iy; 
Ixy = Ix.*Iy; 
Ix2_filted = imgaussfilt(Ix2,1); 
Iy2_filted = imgaussfilt(Iy2,1); 
Ixy_filted = imgaussfilt(Ixy,1); 
k = 0.05; 
threshold =5*10^7; 
R = zeros(h,w); 
for i = 1:h-2 
 for j =1:w-2 
 detM = Ix2_filted(i,j) * Iy2_filted(i,j)-Ixy_filted(i,j)^2; 
 R(i,j) = detM -k*(Ix2_filted(i,j) + Iy2_filted(i,j))^2; 
 end 
end 
corners_coor = R.*(R>threshold); 
corners_coor(corners_coor~=0) =1; 
%imshow(corners_coor) 
%fincorncoor =zeros(size(corners_coor)); 
CC = bwconncomp(corners_coor); 
S = regionprops(CC,'centroid'); 
fincorncoor = zeros(size(S,1),2); 
for u = 1:size(S,1) 
 fincorncoor(u,:) = round(S(u).Centroid); 
end 
imshowpair(corners_coor,fincorncoor,'montage') 
end 

 

  



6.3 NCC.m 
function [ bestfit,cornersncc1,cornersncc2 ] = NCC( 

Im1,Im2,corners1,corners2, nccthre) 
%corners1 = HarrisCornerDetector(Im1); 
% corners2 = HarrisCornerDetector(Im2); 
ps =2; 
px1 = corners1(:,2); 
py1 = corners1(:,1); 
px2 = corners2(:,2); 
py2 = corners2(:,1); 
temp = zeros(1,length(px2)); 
bestfit = zeros(1,length(px1)); 
Im1 = [circshift(Im1(1:ps,:),ps-1,1); Im1 ;circshift(Im1(end:end-ps,:),ps-

1,1)]; 
Im1 = [circshift(Im1(:,1:ps),ps-1,2) Im1 circshift(Im1(:,end-ps:end),ps-

1,2)]; 
Im2 = [circshift(Im2(1:ps,:),ps-1,1); Im2 ;circshift(Im2(end:end-ps,:),ps-

1,1)]; 
Im2 = [circshift(Im2(:,1:ps),ps-1,2) Im2 circshift(Im2(:,end-ps:end),ps-

1,2)]; 
Im1 = double(Im1); 
Im2 = double(Im2); 
for i = 1:length(px1) 
 patch1 = Im1(px1(i):px1(i)+2*ps,py1(i):py1(i)+2*ps); 
 patch1mm = patch1 -sum(sum(patch1))/(ps+1)^2; 
 patch1n = patch1mm/sqrt(sum(sum(patch1mm.*patch1mm))); 

  
 for j = 1: length(px2) 

  

 patch2 = Im2(px2(j):px2(j)+2*ps,py2(j):py2(j)+2*ps); 
 patch2mm = patch2 -sum(sum(patch2))/(ps+1)^2; 
 patch2n = patch2mm/sqrt(sum(sum(patch2mm.*patch2mm))); 

  
 temp(j) = sum(sum(patch1n.*patch2n)); 

  

  
 end 
 [maxv, patch2no] = max(temp); 

  
 if maxv > nccthre 
 bestfit(i) = patch2no; 
 end 

  

  
end 
[positionx] = find(bestfit~=0); 
cornersncc1 = [py1(positionx) px1(positionx)]; 
cornersncc2 = [py2(bestfit(positionx)) px2(bestfit(positionx))]; 
end 

 

 



6.4 RANSAC.m 
 

function [fundamental, incor1,incor2] = 

RANSAC(Ima1,Ima2,cornersncc1,cornersncc2, iter,ransthreshold) 
    cornersncc1 = circshift(cornersncc1,1,2); 
    cornersncc1 = [cornersncc1 ones(size(cornersncc1,1),1)]; 
    cornersncc2 = circshift(cornersncc2,1,2); 
    cornersncc2 = [cornersncc2 ones(size(cornersncc2,1),1)]; 
    homocount = cell(iter,2); 
    for y = 1:iter 

  
        randcorloc = floor(size(cornersncc1,1)*rand(8,1))+1; 
        A = zeros(8,9); 
        for p=1:8 
            A(p,1) = cornersncc1(randcorloc(p),1) * 

cornersncc2(randcorloc(p),1); 
            A(p,2) = cornersncc1(randcorloc(p),1) * 

cornersncc2(randcorloc(p),2); 
            A(p,3) = cornersncc1(randcorloc(p),1); 
            A(p,4) = cornersncc1(randcorloc(p),2) * 

cornersncc2(randcorloc(p),1); 
            A(p,5) = cornersncc1(randcorloc(p),2) * 

cornersncc2(randcorloc(p),2); 
            A(p,6) = cornersncc1(randcorloc(p),2); 
            A(p,7) = cornersncc2(randcorloc(p),1); 
            A(p,8) = cornersncc2(randcorloc(p),2); 
            A(p,9) = 1; 
        end 
        [U, S, V] =svd(A'*A); 
        homog = U(:,9); 
        fundamental = V(:,9); 
        % TODO: Does below need to be applied to the fundamental matrix? 
        % YES 
        homog = fundamental; 
        homog = transpose(reshape(homog,3,3)); 

  
        count =0; 

  
        mapped1to2 = zeros(size(cornersncc1)); 
        distances = zeros(size(cornersncc1,1),1); 

  
        for n = 1: size(cornersncc1,1) 
            mapped1to2(n,:) = transpose(homog*transpose(cornersncc1(n,:))); 
            % mapped1to2(n,:) = mapped1to2(n,:)/mapped1to2(n,3); 
            % distances(n) = norm( mapped1to2(n,:)-cornersncc2(n,:)); 
            distances(n) = abs(mapped1to2(n,:) * 

transpose(cornersncc2(n,:)))/sqrt(mapped1to2(n,1)^2 + mapped1to2(n,2)^2); 

  
            if distances(n)< ransthreshold 
                count = count +1; 
            end 
        end 
        homocount{y,1} = homog; 
        homocount{y,2} = count; 



    end 
    [maxv loc] = max([homocount{:,2}]); 
    realhomo = homocount{loc,1}; 
    inliercorners = zeros(size(cornersncc1,1),1); 
    for j = 1: size(cornersncc1,1) 
        mapped1to2(j,:) = transpose(realhomo*transpose(cornersncc1(j,:))); 
        % mapped1to2(j,:) = mapped1to2(j,:)/mapped1to2(j,3); 
        % distances(j) = norm( mapped1to2(j,:)-cornersncc2(j,:)); 
        distances(j) = abs(mapped1to2(n,:) * 

transpose(cornersncc2(n,:)))/sqrt(mapped1to2(n,1)^2 + mapped1to2(n,2)^2); 

  
        if distances(j)< ransthreshold 
            inliercorners(j) = 1; 
        end 
    end 
    inlierloc1 = find(inliercorners~=0); 
    incor1 = cornersncc1(inlierloc1,:); 
    incor1 = circshift(incor1(:,1:2),1,2); 
    incor2 = cornersncc2(inlierloc1,:); 
    incor2 = circshift(incor2(:,1:2),1,2); 
    A = zeros(length(inlierloc1)*2,9); 
    for i=1:length(inlierloc1) 
        A(i,1) = cornersncc1(inlierloc1(i),1) * cornersncc2(inlierloc1(i),1); 
        A(i,2) = cornersncc1(inlierloc1(i),1) * cornersncc2(inlierloc1(i),2); 
        A(i,3) = cornersncc1(inlierloc1(i),1); 
        A(i,4) = cornersncc1(inlierloc1(i),2) * cornersncc2(inlierloc1(i),1); 
        A(i,5) = cornersncc1(inlierloc1(i),2) * cornersncc2(inlierloc1(i),2); 
        A(i,6) = cornersncc1(inlierloc1(i),2); 
        A(i,7) = cornersncc2(inlierloc1(i),1); 
        A(i,8) = cornersncc2(inlierloc1(i),2); 
        A(i,9) = 1; 
    end 
    [U, S, V] =svd(A'*A); 
    %[~, loc] =min(S); 
    %homog = U(:,9); 
    fundamental = V(:,9); 
    homog = fundamental; 
    % TODO: Does below need to be applied to the fundamental matrix? YES 
    fundamental = transpose(reshape(homog,3,3)); 
end 

 

 

 

 


